4

Walter Seifritz: The thermal neutronic soliton wave phenomenon in an infinite medium

Walter Seifritz

The thermal neutronic soliton wave
phenomenon in an infinite medium

The basic dynamics of so-called neutronic soliton waved into
a subcritical infinite medium is described. After “ignition” (by
means of a strong enough neutron source or a critical, power
producing reactor zone) such waves propagate into an initially
subcritical (poisoned) medium. Their velocities are propor-
tional to their amplitudes — a typical non-linear soliton wave
effect. A soliton reactor concept, based on this idea, may be
particularly suited for small thermal light water reactors(e.g.
for space heating purposes) to materialize the so-called “bat-
tery concept”. Hereby, only twice, at the beginning of the fuel
cycle and at the end of the useful lifetime of the whole reactor
system, fuel has to be loaded and unloaded, respectively.

Das Phiinomen thermischer Solitonenwellen in einem unendli-
chen Medium. Die Dynamik einer thermischen Solitonenwelle
in ein unterkritisches (vergiftetes) unendliches Medium wird
beschrieben. Nach der “Ziindung” (durch eine starke Neutro-
nenquelle oder einer kritischen, leistungserzeugenden Reaktor-
zone) wandern solche Wellen in die unterkritischen Zonen.
Ihre Geschwindigkeit ist proportional zu ihrer Amplitude —
ein typisch nicht-linearer Solitoneneffekt.

Ein solches Solitonenkonzept konnte insbesondere fiir kleine
thermische Reaktoren (z. B. Heizreaktoren) interessant sein,
um das “Batteriekonzept” zu verwirklichen. Dabei wird der
Reaktor nur einmal zu Beginn beladen und am Ende der
niitzlichen Lebensdauer samt dem Kessel entsorgt.
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1 Introduction

Hitherto, it has been shown [1-4] that a neutron fluence
wave — if it is “ignited” once with a sufficiently high number
of moles of source neutrons — propagates autocatalytically
into fertile materials, producing power there and converting
it in its “wake” partially into fissionable material and fission
products. The shape of such a neutron fluence wave resem-
bles very much a shock wave and the corresponding neutron
fluence wave resembles a reciprocal catenary.

In analogy to these fast neutron systems we analyze in the
following whether such a non-linear wave effect is also possi-
ble in a thermal system with k..<1. For this and for the sake
of simplicity we will consider an infinite, graphite moderated,
system with U-235 as the fissile fuel and B-10 as a burnable
poison. Furthermore, the analysis will be performed in one-
dimensional geometry with one space coordinate x and a
monoenergetic thermal group of neutrons. ;

2 Establishing the wave equation
The non-linear integro-differential equation for the thermal

neutron flux, ®, controlling such a wave phenomenon in
equilibrium, i.e. if all initial transients due to the “ignition
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geometry” have died out, is given by the self-explaining bal-
ance

D-A® + |(n® —1)o™ . Ngs — 0f - N — E;’fo]d) =%q>‘ 1)
where

D = diffusion coefficient, in [cm]

TS = neutron yield per neutron absorbed, [-] (e.g.

for U-235 = 2.08)

microscopic absorption cross sections for the

fissile material, the neutron poison, and the

fission product pairs, respectively, in [b]

Niis(x, t), Np (x, t), Ng(x, t) = space- and time-dependent
atomic particles densities of
the fissionable material, the
neutron poison, and the fission
product pairs, respectively, in
[em]

d(x, t) = space- and time-dependent thermal neutron

flux, in [cm?s]; (the subscript t denotes its
partial time derivative)

I

fis [p
of*, f, of

0 = const. = macroscopic absorption cross-section
of the moderator, in [cm™]

v = velocity of the wave phenomenon expected, in
[cm/s]

In addition to Eq. (1) we use the following burn-up equa-
tions which yield the coupling between the atomic particle
densities

Npgs = — 08 - Nps - @ with Ngg(x,0) = Neisp
Np = -0 N, -® with Np(x,0) = Npo
Nip =0 Ng - @ — o - N - @ with Ngp(x,0) = 0. ()

The three equations of Eq. (2) can be integrated explicitly
yielding, together with their initial conditions,

Nﬁs(x. l) = Nﬁsv() -e ~F (3)
Np(x,t) =Npo-eF 4)
Ni(r0) = g [eF - e ] ©
where
t
F = F(x,t) = o / ®(x,7)-dt (6)
o
is the (dimensionless) neutron fluence and the ratios
oy of
o=gw P=gw ™

are (dimensionless) microscopic cross section ratios.
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Introducing Egs. (3-5) into Eq. (1) we obtain an integro-
differential equation for the neutron flux being

D-A®+E8 - |n®-1)-eF

—aF _ ‘B z

=0
o

(e F-ePf)—b|.0= 1¢, (8)
with Eg‘_so being the initial macroscopic absorption cross sec-
tion of the fissionable material in cm™! and the (dimension-
less) initial ratios

NpO E'anu
a=— = 9
Nexo I -
Eq. (8) can be written in the form

1
/ 2R S — =
A% +BX(F)- & ==& (10)

which is not a classical Helmholtz equation since the buck-
ling term is a transcendental function of the integrated neu-
tron flux. This introduces a strong non-linearity into the
wave equation. Only for zero-power applications, i.e. for
F = 0, Eq. (10) reduces to the classical Helmholtz equation
with B2 = (nfis -1) —a - b) 22},/1) in cm~ = const. Only in the
case B2 = const. Eq. (10) can be solved by a product formula-
tion for the space- and time-dependent functions and by
separating them.

3 The soliton formulation

In order to solve Eq. (8) we try the formulation
L

F:F(x,t)=F[x—_—vE] =025/¢(X,‘[)Ad‘[

D (1)

because we conjecture that Eq. (8) possess a wave solution
due to physical reasons. The “minus sign” in the (dimension-
less) variable means that the direction of propagation with
velocity v is to the right, i. e. into the direction of the positive
X-axis.

From Eq. (11) we get successively
v ; V2

SRS e
. sfis 2 . fis
D-of D? .ol

"

=

¥
P oy ety E"
XX D"‘Ugs

(12)
where the derivatives of F have to be taken with respect to
the whole argument.

Introducing Eq. (12) into Eq. (8) we observe firstly that v
cancels completely meaning that the resulting wave number
will be independent on v, facilitating the problem signifi-
cantly and justifying the formulation made. Secondly, the
resulting ordinary autonomous differential equation of third
order in F can be integrated once. In this integration step the
integration constant has to be chosen in such a way that
asymptotically for F* = F” = 0 also F has to be zero. We call
this the so-called first “ground-state” of the equation.

We obtain in this way and in dimensionless notation for
F>0

F'+F = O(F)

=D-£3}- [m‘“ ~1)-(eF-1)-a(e™F -1)

_%{%e'“‘—l)—(e F—l)} —bF}

yielding an ordinary differential equation of second order
being autonomous, i. e. its RHS, ©(F), depends only on the

(13)
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amplitude of the function itself. All terms in (F) are negative
for F 2 0 except the second one because only the burn-up of
the poison results in a positive reactivity effect.

As already pointed out [3, 4], Eq. (13) can be interpreted as
generalized Sine-Gordon equation which is given by u—u, =
sin (u). The formulation u = u(y) = u[(x-vt)/(1-v2)"%] yields
d2u/dy? = sin(u) which has the solution u(y) = 4 arctan(ey).

The RHS of Eq. (13), ©(F), can be represented by a Four-
ier Series, possessing a fundamental sine-mode and higher
sine-harmonics. Therefore, Eq.(13) can be considered as a
Sine-Gordon equation with an additional friction term on
the LHS and additionally higher harmonics on the RHS. An
analytical solution of this type of equation is not known but
approximations are possible if certain conditions are fulfilled
— as we will see later on.

4 The infinite multiplication constant k.. (F) and a numerical
example

Before tackling Eq. (13) we first deal with the infinite multi-
plication constant k (F) being also a function of the ncutron
fluence. It is given by definition through

neutron-production

g i :
o(F) neutron-absorption
2 V. (Tlﬁs - Nisis
off +Ngs +02 Ny + 08 Ny + 2
5 - e F
efta-a-eF+ tfgf (e F-efF)+b
with
fis
) e S (14)

being the classical expression for zero-power applications.

In order to be able to introduce quantitative figures we con-
sider an infinite medium containing, for example, initially only
three types of homogeneously mixed particles: graphite as the
moderator, U-235 as the fissile fuel, and B-10 as poison.

The thermal nuclear data used are as follows:

(1) Graphite:

p=16g/em®, 0™ =48mb, 6" =48b, 6, =0c" +0o"
~o™=48mb, Npo=8-10%/cm?, £7 =3.84-10"*/cm,
T2 =0.384/cm, D= !/;- )\, = 0.868 cm.
(2) U-235:
of*=580b, 0% =108b, of* =0+ =688b,
nf =208
(3) Boron-10:
of =3 837 b a=oP/el—5577
(4) Fission product pairs: According to ref. [5], we use two
groups of fission products, shown in Table 1, being in equili-
brium with the actual burn-up dynamics. The total cross sec-
tion of absorption is
o =873borB=0P/of =127

The Xe-poisoning effect is not contained. Since its time
scale is measured in 10 h it has to be treated separately.
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1.22,=(k..)

max
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Fig. 1. The infinite multiplication constant k.. as function of the neu-
tron fluence F.The continuation of the curve into the negative F-
regime is only for academic interest. The increase of k.. due to the poi-
son burn-up is clearly borne out because dk/dF > 0 for F = ().

14 ©(F) ' Opnay=1.029;x 10-5

X '
1

105 ;

1
: Fo=
5 .06685
 Frnex = 03236

0 ; ‘

0 0.025 0.05 F 0.075

Fig. 2. O(F) from Eq. (13). There are two ground-states: F.. = 0 and
F.. = 0.06685. O(F) can be expanded in a Fourier series where the fun-
damental mode is dominant (see text) since (F) is almost symmetrical
around F./2.

If we assume that initially the infinite medium possesses
k.. (0) <1 we obtain from Eq. (14) the condition

T nﬁs
Noo =35 {k:x(O)

(15)

- 1] -Ngso — £75/08, incm 2
For k (0) = 0.9, for example, we obtain — upon introducing

the other numerical values - for the initial atomic particle
density of the poison

N, = .2351 Ngo—1.001-10", incm™3 16
P

Taking Ngsp = 5 - 10"%cm? we get Npp = 1.1655 - 10'%cm3 and
a=02331and b=1.1163 - 102

Introducing these numbers, together with B = 1.27 into
Eq. (13) we obtain k.. (F) as shown in Fig. 1 exhibiting the
fact that the burn-up of the poison increases k beyond unity.

5 Numerical solution of Eq. (13)
Introducing the above quantities into Eq. (13) together with
DI = 2.986 - 10 we derive

p-1

—a.e~oF A»ﬁ%-e‘m’—{(nﬁ‘— 1)~a+1}J

F”+F =O(F) = D~E§;‘0“(n“$ -1) +—ﬁ—}c-‘“‘

=0 [17.27 -e™F —0.696-¢=557'F

-11.059 - e 17F _ 5515] 17)

with the property that ©(0) = 0. Fig. 2 displays the function
O(F) as varying with the neutron fluence F.
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Besides the first ground-state F = 0 we observe a second
ground-state F, = 0.06685 where also O(F,,) = 0.

Since an analytical solution of Eq. (17) is not known we
solved it numerically by using the SEQUENCE-generator of
the TI-92 calculator and by applying a simple three point
Euler algorithm for the derivatives. Fig. 3 visualizes the
expected shock-like F function between the two mentioned
asymptotic ground-states F = 0 and F = F,, = 0.06685. Tt is
called the “kink” of the solution.

6 Approximations of Eq. (13)
Since F is almost symmetrical around F../2, when it is turned

by 180°, we approximate ©(F) in the range 0 < F < F_ by a
Fourier series in the form

o s
6(F) = %An -sin (E P) (18)
with the coefficients being
2 F
y n-m
A= l?;/ O(F) -sm(-l—:-;—F) -dF. (19)
0

The first coefficient, i. e. the amplitude of the fundamental
mode A; and the amplitudes of the higher harmonics are
given by
A1 =1.062 105, Ay =2.54-107, A3 = 3.98 - 107 etc. (20)
Since the amplitudes of the higher, harmonics are almost two
orders of magnitude smaller than the amplitude of the funda-
mental mode we approximate O(F) by its fundamental mode
(n = 1) yielding a Sine-Gordon equation, possessing only an
additional friction term on the LHS, given by

(21)

with F.. = 0.06685 and A; = 1.062 - 10-5. As shown in the
Appendix the friction term dominates the LHS of Eq. (21)
because A; is very small. With F”« F’ a further approxima-
tion of Eq. (21) is

4
K s St -
F Ay Sm(Fx )

which can be integrated analytically by separating the vari-
ables. Because the integration variable is y = (x — vt)/D we
derive for the neutron fluence soliton

2-F, A=,
F=—2.arctan (e?t? ")
n

For y — e and y — - = we obtain asymptotically the two
ground-states F = 0 and F = F,_, as shown in Fig. 3. For our
previous example, the suggested analytical approximation
turns out to be in good agreement with the numerical solu-
tion. This property facilitates the discussions in the next
steps.

The next step is to determine analytically the soliton
shape of the neutron flux ®. For this, we use Eq. (12) and
Eq. (22). A peak neutron flux, @, can be introduced through

[ . - . L
F"+F —Alsm(FwF)

(22)

(23)

¥

s F
s (*mm=7°°>
V'Al
= - - 24
D~0£" ( )
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Approximation F..=.06685
d Eq. (23)
.05 Exact Solution
5x10%(x-vt)/D
L]
Pq
v Po \
ax = @ = reciprocal
7 P catenary
P N
e 0 5x103(x—v1)/D
N, N,
Nhs . Nps, 00= -9353-Nj
N; P T N;, o= .6888:N,
k“\ S
Keo,0= -9
N
5 fp,o :
= 0 5x103(x-v1)/D

Fig. 3. The shapes of the neutron fluence, F, neutron flux, ®, specific
power density, p, solitons as well as the relevant atomic particle density
solitons and k.. as function of the (dimensionless) variable (x-vt)/D.
The approximation, Eq. (23), of F is a Gudermannian function, and &
and p are approximately given by reciprocal catenaries or secans
hyperbolicus functions. The velocity vector points to the left into the
poisoned subcritical medium with k.(0)<1." All the shapes shown do
not change during propagation (= isentropic transport).

Therefore, the velocity v of the solitons is

Dl =
vV=— R by (23)
and the flux soliton itself is given by

$o

= 2

= osh e X+EJES<I) t i
TR D 7 S,

which emphasizes the fact that the velocity is proportional to
the amplitude - a typical non-linear effect in wave theory.
The “plus sign™ in the variable means that the wave is propa-
gating to the left side as indicated in Fig. 3.

If, for instance, @y is assumed to be 1010 n/cm3s, the wave
velocity turns out to be Ivl = 5.62 - 107 cm/s = 17.7 cm/y. This
value depends strongly on the initial subcriticality k.. (0).

The half-width, Ax, of the reciprocal catenary of Eq. (26)
is

AX = 0.8345D—:2’1 ~ 45.8m @7
1

which seems to be high for practical applications. However,
this is only due to the example chosen. Nevertheless, it
demonstrates the principle in an infinite medium.

The shape of the flux soliton ¢ [(x-vt)/D] is also shown in
Fig. 3. The atomic particle densities N, N,, and Ny, are
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obtained by using Egs. (3-5) and by inserting F from Eq.
(23). Their variation as affected by the wave propagation is
shown in Fig. 3, together with their asymptotic values before
and behind the wave in its “wake” (see Appendix).

All these functions can be obtained in analytical and
explicit form when introducing the above approximations,
Not in all applications, however, these approximations are as
good as in our actual example.

Furthermore, the power density, p, can be calculated using
Niis from Eq. (3), @ from Egq. (23), and from Eq. (26) yield-
ing

Pl(x~vt)/D] =¢-0f. N - @ in W/cm?

(28)

with y = [(A1 n)/(F D)] - (x - vt) where [(A1 1)/(Fx D)) is
the wave number in cm ! and & = 200 Me V/fission = 3.2 - 10-11
J/ission. For instance, if @) = 1012 n/cm?s we obtain po = 0.93
W/em? = 930 kW/m?.

For the sake of completeness, Eq. (29) can also be
expressed in terms of only circular and hyperbolic functions
by

: d{E=gd(y)
p=¢-38.8,. sech(y) - cotg [g,_ {%_ZS(XL}} (29)
when the Gudermannian in the form
z
d(z) = / 20 2 - arctan(e?) (30)
i g cosh(t)

-00

is introduced being zero for z —+ —eo and 7t for z — + o [6].
(By the way, this is the first application of the soliton theory
in which nested Gudermannians play a role).

As shown in Fig. 3, p is slightly skew compared with ®,
mainly because Ng; is higher for y <0 than for y > 0.

Since F, << T, Eq. (29) can further be approximated by
p=&-Eff - &g - sech(y) (31)

Hence, the shape of p becomes identical with that of the
neutron flux ®.

According to Eq. (32) the total power of the specific
power density soliton in an infinite medium is given by

+o0

P= / p-d(x —vt)
o F..D

= €% o Fy -D/A; in W/em? (32)

resulting for ® = 102 n/cm?s in P = 5.07 kW/cm2.
7 Possible applications and conclusions

Of course, these ideas can also be applied to thermal light
water reactor systems where the fuel possesses a fissil'e
enrichment of about 3% and where the burnable poison is
Gd,0s.

In the opinion of the author, the ignition of a spatially
propagating burn-up wave in a light water reactor will hz_xve
sense only in small reactor cores like those of space-heating
reactors. Their power levels are in the realm of 10-20 MW
and their core lengths are in the range of 0.8-1.5 m [7]. The
residence time of the fuel elements is approximately 11.5

KernTecHmik 63 (1998) 5-6
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P _3426=F_, =
3 2
i
i
- F'+F' =sin (F)
n/2 !
1
1 1
]
; i
: J
v 0 in arb. units of (x-vt)/D

Fig. 4. The numerical solution of F”+ F’ = sin(F) (in which the slope
and curvature are equally weighted) as function of arbitrary units of
(x-vt)/D. As can be seen, such a solution is physically not possible for
our problem because a negative flux would result behind the maximum
where F' = 0 and F” = sin(Fpax). In our problem F must increase
monotonically as it is the case for the Gudermannian.

Table 1. Thermal absorption cross sections of fission products

af b Ty, Isotope Ty, Fission
Precursor | yield, Yi, %
Group I:
Sm-149 6.6 - 10* stable 50h 1.150
Sm-151 1.2-10¢ 80a 27h 0.730
Cd-113 25-10¢ stable 53h 0.011
Eu-155 14-10# stable 23 min 0.031
Group II:
Eu-153 420 stable 47h 0.15
Kr-83 205 stable 23h 0.54
In-115 197 stable 54h,43d 0.01
Nd-143 300 stable 13.8h 5.90
of* =38 | Yi(olP), = 8730

years due to the relatively low load factor of 0.5 and due to
the relatively low power density. Therefore, three core burn-
ups correspond to the useful lifetime of the whole reactor
system of 30-35 years.

In order to avoid any change or transports of fuel during
this lifetime of the reactor, one could endow a 10 MW, reac-
tor at the beginning with a core of 2.4 m height instead of 0.8
m. In this core only the middle third would be critical at the
beginning and would produce power. The upper and the
lower third would be subcritical at the beginning due to a
higher Gd;O; poisoning. The parameters k.(0), F.., Nsso,
Ny, ete. would be chosen in such a way that the two wave
solitons, ignited by the power producing core in the middle
and propagating in opposite directions, reach the two ends of
the cylindrical core after about 30-35 years.

Then, the power producing phase is quenched automati-
cally and the total burn-up is reached. Afterwards, all the
internals including the reactor vessel with the irradiated fuel
is removed and disposed of simultaneously in a nuclear waste
repository. Thus, one initial fuel loading is adequate for its
useful lifetime. We have called this the “battery concept”.

The advantage is that fuel manipulations are not neces-
sary during the lifetime of the reactor (except the initial
loading and the unloading at the end). Compared with the
possibility of making the whole length of the reactor critical
from the beginning on, the soliton core design keeps the
power producing volume smaller, i.e. more compact. The
disadvantage is the higher initial fissile inventory, i. . a more
expensive core. It contains “self-shiclded”, stored fissile
material which is needed only after a decade or so. This cor-
responds to “stored” capital and one has to pay interest rates
for it leading to somewhat higher fuel cycle costs.
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It is obvious that further research work is necessary, parti-
cularly with respect to the power control by means of reac-
tivity control of the amplitude of the flux soliton. Also from
the point of view of safety the soliton reactor will have pre-
ferable properties; a run away of the flux soliton is determi-
nistically excluded.

Aside from these details, it should be noted that the pri-
mary idea of this work was to point out the possibility of a
propagating critical core zone in thermal reactor systems.

(Received on 5 February 1998)
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Appendix

A.1 Approximation of Eq. (21) by Eq. (22)

In order to show that the curvature (first term) can be
neglected compared with the slope (second term) in Eq. (21)
F"+F = A, -sin(g—F)

oo

(A1)

we transform it into its standard form by the self-similar type
of a formulation

my>

ST

By TF(\/——F?- (A2)

resulting in

F" + 1[ Foo -F’ =sin(F) or F'+44.8 F = sin(F) (A.3)
A] -7

if we insert Fo, = 0.06685 and A; = 1.062 - 10-5. Since An/
Fo is small compared with unity, the second (friction) term
dominates the LHS of Eq. gA.4! and F” can be neglected.
On the other hand, if \/A7/F, was large compared with
unity the same self-similar type of formulation in Eq. (A.2)
leads again to Eq. (A.3). But then the first term (F”) would
dominate the LHS and the second (friction) term could be
neglected. If \/A;7/F, was in the order of magnitude of
unity no approximation of Eq. (A.1) is possible.
Summarizing these procedures we can write Eq. (A.3) in
the form
F” + xF’ = sin(F) (AS5)
If x » 1 the approximation F{ = sin(F;) holds, possessing
the solution Fy = 2 arctan(e¥®). If k « 1 the approximation F¥
= sin(F2) holds, possessing the solution F = 4 arctan(ey) if
one remembers the multiple angle formula: sin(4a) = 4
sin(a) cos(a) - 8 sin¥(at) - cos(c). The two ground-states of
F) are 0 and =, and the two ground-states of F; are 0 and 2r.
Fig. 4 shows the numerical solution of F” + F’ = sin(F). It
is obvious that such a solution is not possible in our physical
application since a negative flux would result after the maxi-
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mum. Therefore, we will always have a function as given by
Eq. (A.5), which can be approximated accordingly.

A.2 Approximations of the atomic particle densities

Introducing the Gudermannian, F, of Eq. (23) into Egs. (3-5)
we can express the atomic particle densities in circular and
hyperbolic functions. Using hyperbolic functions alone, the
identity gd(z) = 2 arctan(e?) = 2 arctan(tanh (z/2)) + /2 has
to be introduced.
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