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A fast reactor in which a solitary wave of neutrons, stabilized
by the burn-up process, propagates autocatalytically through
fertile material like U-238 or Th-232 is a completely new idea
in reactor technology. Starting with the stationary monoener-
getic neutron diffusion equation in one-dimensional geometry
the main properties of the burn-up wave are derived and
shown that in deed a fast reactor, possessing fuel elements of
onbfertile material, can be possible.

Solitare Abbrandwellen in einem multiplizierenden Medium.
Ein schneller Reaktor, in welchem sich eine Abbrandwelle
autokatalytisch durch fruchtbares Material wie U-238 oder
Th-232 , durchbrennt” ist eine vollkommen neue Idee in der
Reaktortechnik. Ausgehend von der stationdren ein-dimensio-
nalen Diffusionsgleichung werden die Charakteristika der
Abbrandwelle abgeleitet und es wird dargelegt, dass ein
schneller Reaktor, dessen Brennelemente nur aus fruchtbarem
Material besteht, in den Bereich des konzeptionell Miglichen
riickt. <

1 Introduction

Recent research work [1-4] indicates that it might be possi-
ble to design a completely new fast reactor. Once “ignited”
by a strong neutron source or a small critical zone a solitary
neutron wave, i.e, a burn-up wave, propagates autocatalyti-
cally through fertile material. Inside the wave the fertile
ma*~-ial is converted partially into bred fissile material which
is «__oned and converted into fission products thereby pro-
ducing energy. In contradistinction to a classical fission reac-
tor the zone in which the chain reaction takes place propa-
gates slowly through the reactor — thus opening a new per-
spective in the design of a new reactor type with a spatially
non-stationary reactor core.

2 Basic equations in infinite geometry

Consider the possibility of an infinite U-238 medium. If any
kind of neutron source, for instance a critical reactor zone, is
installed at one end of the U-238 block neutrons will pene-
trate into this fertile material converting it through capture
reactions successively into fissile material which will be fis-
sioned afterwards releasing thereby new neutrons supporting
this penetration process.

If, after some time in equilibrium, a self-sustained neutron
wave along the x-axis develops, the following neutron bal-
ance holds:

D ®u(x,t) + [M™ —1)- 05 Nes(x,1) — (1 =) - 05" - Neer (%, 1)
55 @(x, 1) =0 (1)
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The notation is self-explanatory. The diffusion constant D is
considered to be constant and X} represents a constant
macroscopic absorption cross section due, for example, to
structural materials. The fertile material (“fer”) is U-238 and
the fissile material produced (“fis”) is Pu-239. The absorp-
tion of the fission products are neglected as well as the built-
up of higher isotopes. The assumptions are kept as simple as
possible to explain the wave character of Eq. (1) if burn-up
proceeds. :

Opposite to earlier considerations, the RHS of Eq. (1) is
set to be zero since the wave character of Eq. (1) should
develop endogenously as proposed by Van Dam [5, 6].

In order to convert Eq. (1) into a wave equation for the
(dimensionless) burn-up or fluence function F(x-vt), where
v is the propagation velocity, we introduce

Xe— Vi

ol /0l d(x,1)-dt = F[——L;--] 2

where 1/Lg is the wave-number and Ly is the diffusion length
in the original fertile material (L= D/E#"0) and we obtain
in equilibrium

1 -V

QZ(}—!’&‘FIZ——[{)-O?T F
T SN
P, = ————F, b =——-F
g =g
ST L
@ = L(z) . ofer F, Wi = L:) . qgcr F (3)

where a dot means the derivative to the whole (dimension-
less), argument z = (x-vt)/Lo. Eq. (3) also fulfills the wave
equation for the neutron flux being @y —v2 Py =0.

Since the propagation velocity is very small [3] the burn-
up equations can be written in the prompt approximation as
function of F by

Nier(X, 1) = Nerg - € =

ofer
e c .
Nﬁs(x’ t) iy 02,\' = U;ﬂ

Neer.o - [eF —e™®F] (4)

with Niis(F=0)=0 and Ner(F = 0) = Ngero (deep in the fertile
material).
Introducing now the abbreviations

o 025/0&1 ﬁ e 0’?' /foier‘

a — 3§ syfer,0
a S Ea:’za

and using Egs. (2-4), the PDE of Eq. (1) can be transformed
into an autonomous ODE of 3rd order for F(z) being

F+Z(F)-F=0 (5)
with the (dimensionless) buckling
zFa) = 2L ) e - T ma (6)
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Fig. 1. (a) Fluence or burn-up F, (b) Neutron flux @ and (c) k- as
function of z=(x-vt)/Lo

where a is the parasitic absorption parameter which can be
chosen arbitrarily and which will be adjusted later on.

To reduce the order of Eq. (5), an integration is carried
out directly under the boundary condition that F(F = 0) = 0
(i.e, the flux-gradient deep in the fertile material is zero)
yielding

& U (F;a)
= (nﬁs_l)a_ﬁ__i[ac F_c—uF‘I_*_(,n(cr 1)~C‘F
+aF-(Bn*+0" -p-1) ™

Multiplying both sides with F and integrating it again under
the condition that F(F=0)=0 (i.e, the flux deep in the fer-
tile material is zero) we get finally an autonomous ODE of
first order being -

F =V (Fa)

& s :
=+V2. [9%{—1})) {?(1-eF)+eF -1}

(1 -q®) -1 —c’F)+%-F2

0.5
B e —p—1)- F] ®)

where the RHS possesses two ground states (zeros): F=0
and F=F...

Furthermore, the numerical choice of the parasitic absorp-
tion term, a, allows to adjust the criticality of the irradiated
fuel in the “wake” of the wave. The latter possesses the max-
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imum and asymptotic burn-up F.. and its criticality can be
expressed by the infinite multiplication constant K..(ee).

If , for instance, k.. (=) =1, the irradiated fuel of the wake
has to be removed from time to time or it has to be poisoned
by inserting additional absorber rods in order to keep the
whole system subcritical in the long run.

If, however, k..(e) < 1, the system works without any exter-
nal human control or in a “self-relianced” manner. In the lat-
ter case Z (F..;a) of Eq. (5) has to be negative.

To adjust the parameter a accordingly we request in Eq.
(5) that F(F.)=0 (i.e., the curvature of the neutron flux is
zero) if Z(F.a)=ke(ee)-1. F=0 in Eq. (5) is fulfilled if
either Z (F..;a) =0 or if V(F.;a)=0 in Eq. (8), delivering the
two conditions

Z(Fu;a) =Ka(e0) -1
V(F.;a) =0 (9)

For a given k..(e) the asymptotic burn-up F.. and a can be
determined numerically by Eq. (9).

2 Numerical evaluation

Introducing the data of Table 1 for a typical Na-cooled fast
system into Eq. (9) and requesting, for example, that
Keo(o<) = 0.96 (about — 108 subcritical) we obtain

F..=1.36375 and a=0.2246 (10)

For comparison, for k.(=) =1 we would obtain F..=1.20388
and a=0.21636.

Introducing a = 0.2246 into Eq. (8) or Eq. (7) and integrat-
ing it numerically using a Runge-Kutta scheme on the TI-92
calculator we obtain the kink of F(z) shown in Fig.1 (a) with
its characteristic jump from F=0 to F=F.=1.36375. The
zero point of the z-axis was chosen to be at the turning point
of F, (F=0), at F=0.612.

Fig. 1 (b) shows the neutron flux as function of z according
to Eq. (3) with the flux peak denoted by ®,. Its width is
AF =1.166 - 0.1877 = 0.9783 or about 5.6 Ly or about 68 cm.

Fig.1 (c) shows k.(z) with k.(e<)=0.96 and k.(0)=1+
0.404-1 = 0.1794. k.. is 1 at the turning points of ®. Inside
these two points k..> 1 with a maximum of 1.1719 if F = 0.4387.

The RHS of Eq. (8), V(F;a) for a=0.2246, is shown in
Fig.2. The ground states (zeros) are F=0 and F=F.=
1.36375 and V is slightly asymmetrical around F./2. This is
the reason why @ (z) in Fig.1 (b) is not an even function with
respect to z=0. The shape of V (F;a=0.2246) resembles to a
Cassini’s oval, to a lemniscate of Jakob Bernoulli or to the

Table 1. Fast monoenergetic nuclear data used [4]

U-238 - Fertile Material

O =8.2b, ol =0.293b, of* = 0.05b, 0" = 0.345b,
N =¥ o /ol = 0.404

Niero = 2.81 - 102 /em® (=60 % of metallic U density)
D=1/(3-2F"% = 145cm, Ly = (D/2F"%)° = 12.2cm

Pu-239 — Fissile Material
of = 2.32b, n* = Vof* /o = 2.32,0f* = 1.82b

Dimensionless Abbrevations

a=cf/offf = 671, B = of" /ol = 0.85

Yy =of* /ol =5275, 6 = of" /o’ = 0.145
a=x3/nfend
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V(F; a = 0,2246)
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Fig.2. V(F; a) for a=0.2246 of Eq. (8) as function of F; the two
ground states (zeros) are F=0 and F= F..=1.36375

first of the 12 Jacobian elliptic functions rather than to a sim-
ple logistic product or to a sine-function. We therefore dis-
pense us here with trying to find good approximations for an
analytical representation.

S« ther important characteristics
3.1 The wave velocity, v

According to the first equation of Egs. (3) the absolute value
of the wave velocity, Ivl, is given by
dy  Ly-of -

|V]=L0-0fﬂ- .
2 vmax

11
® (11)

max
being proportional to the peak flux @y and being inversely
proportional to the original atomic particle density of the fer-
tile material, Nierp (or to its density).

Assuming, for instance, ®;=10"n/(cm? s) we obtain with
Vmax=0.21 from Flg 2
vl =2 - 10 cm/s = 6.3 mm/year (12)
Theoretically @y depends on the initial boundary condition
of the igniting process, in practice, however, ®; can be cho-
sen depending on the power coefficient of the reactivity of
$ ystem.

o
3.2 The wake properties

The relatively high asymptotic burn-up of F =1.36275 (due to
the simplified assumptions we made in Eq. (1)) means that the
irradiated fuel consists essentially of fission products. The fer-
tile material reduces to Nyer,/Nrer,0 = 26 % of its initial value.

The asymptotic enrichment € in the wake is, in accordance
with Eq. (4), given by

Nﬁs.oc B —{a+1)F.
€= = 1—-e ¢t UFx
Nfer.() a—1 [ ]
p
= ~14.9%. 13
a-1 % (13)

¢ varies monotonically from €=0 (F=0, deep in the fertile
material) up to the above value in the wake of the wave (F =
F..):

3.3 The specific power density, p

The spatial specific power density distribution is defined by
= [0?‘ Nss + 0;" Nr“:? - (14)

in fissions/(cm?s)
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which can be written by means of Egs. (3), (4), (8) and (11)
and by introduction of two further abbreviations
y = ?S./of:[-, o= U?s/ogcr

in the form

p(F) =20 @ - J—f‘l(e' F_eoh) 4 5. Y

=xfr0. &, .G (F) (15)
With a=0.2246 of the above case G varies from zero
(=G (0), deep in the fertile material) to 0.3281 (= G(0.1877),
at the first turning point of ®) to 0.4916 (= G (0.612), where
the flux peaks) to 0.1683 (= G(1.166), at the second turning
point of ®) to practically zero (=G (F.), in the wake).
p peaks at F=0.4565 (slightly right of the flux peak) with
Gmax = 0.5285.

With Nrer,0=2.81 - 102/cm? and @) = 1015 n/(cm?s) the maxi-
mum power density, Pmax, is therefore = 164 MW /m3.

3.4 The role of ke

The classical definition of the effective multiplication con-
stant in a monoenergetic, gecometrically finite, system is

Kefr = (16)

Koo
1+L3-B2
where B? is the (geometric) buckling and where k.. is con-
stant. Opposite to a spatially stationary finite critical mass
we do not have the Dirichelet condition (® =0 on the bound-
aries), instead we have in our case the Cauchy conditions (®
and ®;=0 on the boundaries, see Fig.l (b)), meaning that
the leakage current j=-D grad @ is zero resulting in an
excellent neutron economy.

According to Eq. (9) k.=1+ L?,B2 =1+2Z(F;a) and,
therefore, we formally obtain

keff =1 (17)

as expected heuristically.
4 Conclusions

It was shown that the time-stationary diffusion equation pos-
sesses a wave solution, controlled by the burn-up process.
The wave propagates autocatalytically into fuel elements
containing exclusively fertile material. By means of the
amount of an initially added parasitic absorber (e.g. struc-
tural material) the reactivity of the irradiated fuel can be
pre-determined.

In a practical reactor configuration one would use a cylin-
der of fertile material which will be ignited in the middle and
two solitary burn-up waves would finally propagate in oppo-
site axial directions as proposed for the first time by E. Teller
etal. [1]. The proposal of the author is to design a ring-reac-
tor in the form of a torus (like a fusion reactor) in which sev-
eral burn-up waves can propagate around - one behind the
other. Once ignited, or once loaded according to Fig. 1 (c),
one would have a fast breeder system without any reprocess-
ing and Pu transports. At the end of its useful lifetime the
site of the reactor could simultancously be the site of the
radioactive waste disposal if it is being built underground in
a suitable surrounding (e. g. in a sand-bed).

The model presented is the simplest way to illustrate this
novel possibility to design a fast nuclear reactor possessing a
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Mitteilung - Note

spatially non-stationary critical mass. Such a reactor does not
work only with the U-238/Pu cycle but also with the Th-232/
U-233 cycle.
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Appendix

For the sake of completeness it should be noted that one
could also start with the PDE of Eq. (1) to obtain an ODE
for @. tExpressing Niis(x,t) and Ni(x,t) by Eq. (4) with

o . [ ®(x,t)dt and dividing it by @ (x,t), differentiating it
a g

0 = :
with respect to t, one can eliminate the e F and eF terms by
repeating this procedure twice. The following non-linear
PDE of 4th order is obtained:

L3 - P =0-0F - (a® + 13- Byy) - B*
+ L3 (a41)-0of - (@ Dy — B, Byy) - B?
— L [(B3® - ext + P - ) - @ — 387 - )] (AD)

This PDE for the space- and time-dependent neutron flux
®@(x,t) cannot be solved by separating space and time. How-
ever, if we make the wave approach

v X - vt
B(x,t) = e v [T}

with z=(x-vt)/Lo and the amplitude proportional to the
propagation velocity, v, we obtain a highly non-linecar ODE
of 4th order for the (dimensionless) flux, depending on the
(dimensionless) variable z being

(A2)

V.V =qa® +a¥ ¥ - (a+1) .0

Ha+ )& ¥V -GV +8)v4+392-§ (A3
with U = d¥/dz etc. Eq. (A3) is a non-homogeneous bi-
harmonic ODE containing only the parameters a and o.
It can be solved numerically with the initial conditions
W(=c0)... W =(-e0) = 0 yielding ‘¥(z). It possesses the shape
of Fig. 1 (b).
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